표 3. | Table 3. 제안된 방식, DopplerNet, pretrained 모델의 F1 score 비교 | F1 score comparison between proposed method, DopplerNet, and pretrained models.

Model type Input timestep Integration type F1 score Neural network parameter
LeNet[15] 1 - 0.9641 5,602,979
2 NCI 0.9749 5,602,979
3 NCI 0.9840 5,602,979
ResNet18 1 - 0.9571 11,178,051
2 NCI 0.9749 11,178,051
3 NCI 0.9825 11,178,051
ResNet50 1 - 0.9592 23,514,179
2 NCI 0.9691 23,514,179
3 NCI 0.9798 23,514,179
VGG19[16] 1 - 0.9559 139,593,539
2 NCI 0.9746 139,593,539
3 NCI 0.9813 139,593,539
NasNetMobile[1],[17] 3 Channel-wise concatenation 0.9769 4,272,887
MobileNetV2[1],[18] 3 Channel-wise concatenation 0.9894 3,325,043
DopplerNet[1] 3 Channel-wise concatenation 0.9948 3,818,755
Proposed method 1 - 0.9727 1,406,473
2 NCI 0.9850 1,406,473
3 NCI 0.9912 1,406,473