표 1. | Table 1. 모델별 성능 비교 | Comparative analysis of model performances.
Model | Inference time (sec) | GPU Memory (MByte) | Top-1 Acc (%) | Top-2 Acc (%) | Top-5 Acc (%) |
ShuffleNet V2 x0.5 | 2.99 | 592 | 81.83 | 93.18 | 98.46 |
ShuffleNet V2 x2.0 | 3.75 | 602 | 87.38 | 95.68 | 99.10 |
ResNet-50 | 5.54 | 1,102 | 89.89 | 96.25 | 99.14 |
ResNet-152 | 8.55 | 1,420 | 89.84 | 96.66 | 99.25 |
ResNext-101-32x8d | 11.10 | 1,626 | 89.98 | 96.49 | 99.30 |
MobileNet V3 Small | 3.75 | 668 | 88.11 | 95.56 | 98.85 |
MobileNet V3 Large | 4.31 | 925 | 89.36 | 95.85 | 98.92 |
Wide ResNet-50-2 | 6.56 | 1,363 | 89.97 | 96.47 | 99.20 |
Wide ResNet-101-2 | 10.93 | 1,709 | 89.73 | 96.46 | 99.34 |
Densenet-169 | 6.63 | 971 | 90.24 | 96.56 | 99.24 |
Densenet-201 | 7.84 | 984 | 89.90 | 96.61 | 99.41 |